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Abstract: We calculate the pressure of massless φ4-theory to order g8 log(g) at weak

coupling. The contributions to the pressure arise from the hard momentum scale of order

T and the soft momentum scale of order gT . Effective field theory methods and dimensional

reduction are used to separate the contributions from the two momentum scales: The hard

contribution can be calculated as a power series in g2 using naive perturbation theory with

bare propagators. The soft contribution can be calculated using an effective theory in three

dimensions, whose coefficients are power series in g2. This contribution is a power series in

g starting at order g3. The calculation of the hard part to order g6 involves a complicated

four-loop sum-integral that was recently calculated by Gynther, Laine, Schröder, Torrero,

and Vuorinen. The calculation of the soft part requires calculating the mass parameter in

the effective theory to order g6 and the evaluation of five-loop vacuum diagrams in three

dimensions. This gives the free energy correct up to order g7. The coefficients of the

effective theory satisfy a set of renormalization group equations that can be used to sum

up leading and subleading logarithms of T/gT . We use the solutions to these equations to

obtain a result for the free energy which is correct to order g8 log(g). Finally, we investigate

the convergence of the perturbative series.
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1 Introduction

In recent years there has been significant progress in our understanding of thermal field

theories in equilibrium [1–4]. Part of the progress is based on the developement of the

calculational technology necessary to perform loop calculations beyond the first correction.

The motivation to carry out such difficult higher-order calculations of e.g. the pressure in

thermal QCD is its relevance to heavy-ion collisions and the early universe. The pressure in

nonabelian gauge theories has been calculated perturbatively through order g4 in ref. [5, 6],

to order g5 in refs. [7, 8], and to order g6 log(g) in ref. [9]. There are three momentum scales

that contribute to the pressure in thermal QCD - hard momenta of order T , soft momenta
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of order gT , and supersoft momenta of order g2T . The next order — order g6 — is the

first order at which all three momentum scales contribute to the pressure and it is also

the order at which perturbation theory breaks down due to infrared divergences [10, 11].

The pressure contains a nonperturbative contribution from the supersoft scale that can be

estimated numerically [12–14]. It also contains a presently unknown contribution from the

hard scale. This contribution can be calculated by evaluating highly nontrivial four-loop

vacuum diagrams with unresummed propagators. As a step in this direction, Gynther,

Laine, Schröder, Torrero, and Vuorinen considered the simpler problem of φ4-theory at

finite temperature and calculated the free energy to order g6 [15]. A difficult part of

the calculation was to evaluate the four-loop triangle sum-integral, using the techniques

developed by Arnold and Zhai in refs. [5, 6].

In hot field theories at weak coupling, the momentum scales in the plasma are well

separated and it is advantageous to use effective field theory methods to organize the

calculations of the pressure into separate contributions from the hard, soft and supersoft

scales. The basic idea is that the mass of the nonzero Matsubara modes are of order T

and heavy. Since these modes are heavy, they decouple from the light modes, i.e. the

static Matsubara modes. In particular, all fermionic modes decouple since their masses are

always of order T . The contributions from the nonzero Matsubara modes to thermodynamic

quantities can be calculated using bare propagators and are encoded in the parameters of

the effective theory. Integrating out the hard scale T , i.e. integrating out the nonzero

Matsubara frequencies, leaves us with an effective dimensionally reduced theory for the

scales gT and g2T [8]. In the case of QCD, the effective theory is an SU(N) gauge theory

coupled to an adjoint Higgs. The process is known as dimensional reduction [16–20]. The

next step is to construct a second effective theory for the scale g2T by integrating out the

scale gT from the problem [8]. It amounts to integrating out the adjoint Higgs and this

step can also be made in perturbation theory. This effective theory is a nonabelian gauge

theory in three dimensions, which is confining with a nonperturbative mass gap of order

g2T [11]. This theory must be treated nonperturbatively and gives the nonperturbative

contribution to the pressure mentioned above.

In the present paper we consider the thermodynamics of massless φ4-theory and cal-

culate the pressure through order g8 log(g) in a weak-coupling expansion using effective

field theory. Calculations in scalar field theory are simplified by the fact that the supersoft

scale g2T does not appear and so we only need to construct a single effective theory for the

soft scale gT . This theory is infrared safe to all orders in perturbation theory due to the

generation of a thermal mass of order gT . Compared to the g6-calculations of ref. [15], the

next order requires the matching of the mass parameter to three loops and the evaluation of

some five-loop vacuum diagrams in the effective theory. The matching involves a nontrivial

three-loop sum-integral that was calculated recently in ref. [21].

The paper is organized as follows. In section II, we briefly discuss effective field theory

and determine the coefficients of the dimensionally reduced theory. In section III, we use

the effective theory and calculate the soft contributions to the pressure. In section IV,

we present and discuss our final results for the pressure. In section V, we summarize. In

appendix A and B, we list the necessary sum-integrals and integrals. In appendix C, we

– 2 –



J
H
E
P
0
8
(
2
0
0
9
)
0
6
6

calculate explicitly some of the new three-dimensional integrals that we need.

2 Effective field theory

In this section, we briefly discuss the three-dimensional effective field theory and the

matching procedure used to determine its coefficients. For a detailed discussion, see e.g.

refs. [19, 20].

The Euclidean Lagrangian density for a massless scalar field with a Φ4-interaction is

L =
1

2
(∂µΦ)2 +

g2

24
Φ4 + ∆L , (2.1)

where g is the coupling constant and ∆L includes counterterms. This term reads

∆L =
1

2
∆ZΦ(∂µΦ)2 +

1

24
∆g2Φ4 . (2.2)

In the present case we need the counterterm ∆g2 to next-to-leading order i g2. It is given by

∆g2 =

[

3

2ǫ
α +

(

9

4ǫ2
− 17

12ǫ

)

α2

]

g2 , (2.3)

where α = g2/(4π)2. We denote by φ(x) the field in the effective theory. It can be approx-

imately, i.e. up to field redefinitions, be identified with zero-frequency mode of the field Φ

in the original theory. The Lagrangian of the effective theory can be then be written as

Leff =
1

2
(∇φ)2 +

1

2
m2φ2 +

g2
3

24
φ4 + · · · , (2.4)

where m is the mass of the theory and g2
3 is the quartic coupling. The dots indicate an

infinite series of higher-order operators consistent with the symmetries, such as rotational

invariance and the discrete symmetry φ → −φ. In eq. (2.4), we have omitted a coefficient

f of the unit operator. Its interpretation is that it gives the contribution to the free energy

from the hard scale T .

For the calculation of the pressure to order g8 log(g), we need to know f and the mass

parameter m2 to order g6 and the coupling constant g2
3 to order g4, i.e. we consider φ4-

theory in three spatial dimensions.1 This theory is superrenormalizable and only the mass

needs renormalization [22]. The parameters in the effective Lagrangian (2.4) are determined

by calculating static correlation functions in the two theories at long distances R, i.e.

R ≫ 1/T , and demanding that they be the same [19]. In the matching calculations, we are

employing strict perturbation theory [19]. This amounts to doing perturbative calculations

in power series in g2 in which we treat the mass parameter as a perturbation in the effective

theory. The Lagrangian is therefore split into a free and an interacting part according to

Lfree
eff =

1

2
(∇φ)2 , (2.5)

Lint
eff =

1

2
m2φ2 +

g2
3

24
φ4 + · · · . (2.6)

1Power counting tells one that the operator (φ∇φ)2 contributes to the free energy first at order g8.
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Figure 1. One-loop Feynman graph that contributes to the coupling g2
3 in the effective theory.

Strict perturbation theory gives rise to infrared divergences in the calculation that phys-

ically are cut off by the generation of a thermal mass m. The same infrared divergences

appear in the loops in the full theory and so they cancel in the matching calculations.

The incorrect treatment of the infrared divergences and the physics on the scale gT is not

problematic since this will be taken care of by calculations in the effective theory. The

matching calculations treat the physics on the hard scale correctly and the physics on that

scale is encoded in the parameters of the three-dimensional effective Lagrangian.

However, the matching calculations of the parameters in Leff are complicated by ul-

traviolet divergences. Those divergences that are associated with the full four-dimensional

theory are removed by renormalization of the coupling constant g. The remaining di-

vergences are cancelled by the extra counterterms that are determined by the ultraviolet

divergences in the effective theory. These divergences are regulated by introducing a cutoff

Λ. The cutoff Λ can be thought of as an arbitrary factorization scale that separates the

scale T from the scale gT (or smaller) which can be treated in the effective theory [19].

The parameters in the effective theory therefore depend on the cutoff Λ in order to cancel

the Λ-dependence of the loop integrals in the effective theory.

2.1 Coupling constant

To leading order in the coupling g2, we can simply read off the coupling g2
3 from the

Lagrangian of the full theory. Making the replacement Φ →
√

Tφ in the Lagrangian (2.1)

and comparing
∫ β
0 dτ L with Leff , we conclude that g2

3 = g2T . The one-loop graph needed

for the matching of the coupling g2
3 to next-to-leading order in g2 is shown in figure 1.

Since the loop correction vanishes in the effective theory due to the fact that we are using

massless propagators, the matching equation reduces to

g2
3 = g2T − 3

2
g4T

∑

∫

P

1

P 4
+ ∆1g

2T , (2.7)

where ∆1g
2 is the order-g4 coupling constant counterterm in eq. (2.3). After renormaliza-

tion, we find

g2
3(Λ) = g2(µ)T

[

1 − 3g2

(4π)2

(

log
µ

4πT
+ γE

)

−

− 3g2

(4π)2

(

log2 µ

4πT
+ 2γE log

µ

4πT
+

π2

8
− 2γ1

)

ǫ

]

, (2.8)

where g2 = g2(µ) is the coupling constant at the scale µ in the MS scheme and we have

kept the order-ǫ terms in g2
3 for later use. We have used the renormalization group equation

– 4 –
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Figure 2. One-loop vacuum diagram.

Figure 3. Two-loop vacuum diagram.

for the running coupling constant g2,

µ
∂

∂µ
α = 3α2 − 17

3
α3 , (2.9)

to change the scale from Λ to µ. The right-hand side of eq. (2.8) is independent of Λ. In

fact, since the coupling g2
3 does not require renormalization in three dimensions, it satisfies

the renormalization group equation

Λ
∂

∂Λ
g3 = 0 . (2.10)

2.2 Coefficient of unit operator

The partition function in the full theory is given by the path integral

Z =

∫

DΦ e−
R β

0
dτ

R

d3xL , (2.11)

and the pressure is then given by P = T logZ/V , where V is the volume of the system. In

terms of the effective theory, the partition function can be written as

Z = e−fV

∫

Dφ e−
R

d3xLeff . (2.12)

The matching then yields

logZ = −fV + logZeff , (2.13)

where Zeff is the partitition function of the three-dimensional theory. Equivalently, we

can write F = Fhard + Fsoft, where Fhard = fT and Fsoft = −T logZeff/V . Now since

calculations in strict perturbation theory in the effective theory is carried out using bare

propagators, there is no scale in the vacuum graphs. This implies that they vanish in

dimensional regularization and that logZeff = 0. Eq. (2.13) then tells us that f is given by

a strict loop expansion in four dimensions.

The vacuum diagrams through four loops are shown in figures 2–5.

– 5 –
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(a) (b)

Figure 4. Three-loop vacuum diagrams.

(a)

(b) (c) (d)

Figure 5. Four-loop vacuum diagrams.

We can then write

Fhard = F (h)
0 + F (h)

1 + F (h)
2a + F (h)

2b + F (h)
3a + F (h)

3b + F (h)
3c + F (h)

3d +

+
F (h)

1

g2
(∆1g

2 + ∆2g
2) + 2

(

F (h)
2a

g2
+

F (h)
2b

g2

)

∆1g
2 , (2.14)

where ∆1g
2 and ∆2g

2 are the order-g4 and order-g6 coupling constant counterterms, re-

spectively, given in eq. (2.3). The superscript h indicates that the expression gives the hard

contribution to the free energy. The expressions for the diagrams are

F (h)
0 =

1

2

∑

∫

P
log P 2 , (2.15)

F (h)
1 =

1

8
g2

(

∑

∫

P

1

P 2

)2

, (2.16)

F (h)
2a = − 1

16
g4

(

∑

∫

P

1

P 2

)2
∑

∫

Q

1

Q4
, (2.17)

F (h)
2b = − 1

48
g4∑
∫

PQR

1

P 2Q2R2(P + Q + R)2
, (2.18)

F (h)
3a =

1

32
g6

(

∑

∫

P

1

P 2

)2(
∑

∫

Q

1

Q4

)2

, (2.19)

F (h)
3b =

1

48
g6∑
∫

P

1

Q6

(

∑

∫

P

1

P 2

)3

, (2.20)
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F (c)
3c =

1

24
g6∑
∫

P

1

P 2

∑

∫

KQR

1

K4Q2R2(K + Q + R)2
, (2.21)

F (h)
3d =

1

48
g6∑
∫

P
[Π(P )]3 , (2.22)

where the symbol
∑
∫

is defined in eq. (A.1) and the self-energy Π(P ) is defined in eq. (A.13).

The expressions for the sum-integrals are listed in appendix A. After renormalization, the

final expression is [15]

Fhard(Λ) = −π2T 4

90
×

×
{

1 − 5

4
α +

15

4
α2

[

log
µ

4πT
+

1

3
γE +

31

45
+

4

3

ζ ′(−1)

ζ(−1)
− 2

3

ζ ′(−3)

ζ(−3)

]

+

+
15

16
α3 ×

×
[

π2

ǫ
− 12 log2 µ

4πT
−
(

1084

45
+ 8γE + 32

ζ ′(−1)

ζ(−1)
− 16

ζ ′(−3)

ζ(−3)

)

×

× log
µ

4πT
+ 8π2 log

Λ

4πT
− 134

9
− 25

3
γ2

E − 1

27
ζ(3) +

31

15
γE−

− π2

2
+ 4γEπ2 − 206

9

ζ ′(−1)

ζ(−1)
− 16

3
γ1 + 8γE

ζ ′(−3)

ζ(−3)
+

+
4

3
γE

ζ ′(−1)

ζ(−1)
− 8

(

ζ ′(−1)

ζ(−1)

)2

− 20

3

ζ ′′(−1)

ζ(−1)
−

−2

3
C ′

ball + 2Ca
triangle + π2Cb

triangle

]

+ O(ǫ)

}

, (2.23)

where α = α(µ), C ′
ball = 48.7976, Ca

triangle = −25.7055, and Cb
triangle = 28.9250. We have

used the renormalization group equation for g2 to change the renormalization scale from Λ

to µ. Note that the final results contains a pole in ǫ. We cancel it by adding a counterterm

Tδf [8]. The term δf can be determined by calulating the ultraviolet divergences in the

effective theory. The triangle diagram in three dimensions has a logarithmic ultraviolet

divergence and the counterterm needed to cancel this divergence is given by

δf =
g6
3π

2

1536(4π)4ǫ
. (2.24)

If we express the counterterm in terms of the coupling g of the full theory, we must take

into account that g6
3 multiplies a pole in ǫ and it therefore picks up finite terms. These

terms will be of order g8 and can be neglected in the present calculation.2 The coefficient

f satisfies the evolution equation

Λ
∂

∂Λ
f = − π2

192(4π)4
g6
3 . (2.25)

This follows from the scale dependence of the triangle diagram in three dimensions and the

fact that the Λ-dependence of f must cancel the scale dependence in the effective theory.

2Note that minimal subtraction in the full theory and in the effective theory are not equivalent. The

difference is the finite terms mentioned above [8].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Feynman graphs that contribute to the self-energy through three loops.

2.3 Mass parameter

The simplest way of determining the mass parameter m2 is by matching the Debye or

screening mass mD in the full theory and in the effective theory [19]. The Debye mass mD

is given by the pole of static propagator, i.e. by

p2 + Π̃(p0 = 0, p) = 0 , p2 = −m2
D , (2.26)

where Π̃(p0, p) denotes the self-energy function. In the effective theory, the equation is

p2 + m2 + Πeff(p) = 0 , p2 = −m2
D , (2.27)

where Πeff(p) is the self-energy in the effective theory. Since the self-energy in the full theory

is expanded around p = 0, we should do to the same in the effective theory (see discussion

below). The loop integrals are therefore evaluated at zero external momentum and since the

matching is carried out using massless propagators there is no scale in the loop integrals.

They therefore vanish in in dimensional regularization, i.e. Πeff(0) = Π′
eff(0) = · · · = 0.

Using this fact and equating (2.26) and (2.27), we obtain m2 ≈ m2
D

3

m2
D = Π̃(p0 = 0, p = imD) . (2.28)

The diagrams that contribute to the self-energy Π̃(P ) through three loops are shown in fig-

ure 6. The self-energy Π̃(P ) is given by

Π̃(P ) = Π̃
(h)
1 (P ) + Π̃

(h)
2 (P ) + Π̃

(h)
3 (P ) +

+
Π̃

(h)
1 (P )

g2

(

∆1g
2 + ∆2g

2
)

+ 2
Π̃

(h)
2 (P )

g2
∆1g

2 . (2.29)

3Note that we use the symbol “≈” to emphasize that the the mass parameter m2 is equal to the Debye

mass m2

D only in strict perturbation theory. The interpretation is that m gives the contribution to the

Debye mass from the hard scale T .

– 8 –
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The expression for the various terms in the self-energy are given by

Π̃
(h)
1 (P ) =

1

2
g2∑
∫

Q

1

Q2
, (2.30)

Π̃
(h)
2a (P ) = −1

4
g4∑
∫

QR

1

Q4R2
, (2.31)

Π̃
(h)
2b (P ) = −1

6
g4∑
∫

QR

1

Q2R2(P + Q + R)2
, (2.32)

Π̃
(h)
3a (P ) =

1

8
g6∑
∫

Q

1

Q2

(

∑

∫

R

1

R4

)2

, (2.33)

Π̃
(h)
3b (P ) =

1

8
g6∑
∫

Q

1

Q6

(

∑

∫

R

1

R2

)2

(2.34)

Π̃
(h)
3c (P ) =

1

4
g6∑
∫

K

1

K2

∑

∫

QR

1

Q4R2(P + Q + R)2
, (2.35)

Π̃
(h)
3d (P ) =

1

12
g6∑
∫

KQR

1

K4Q2R2(K + Q + R)2
, (2.36)

Π̃
(h)
3e (P ) =

1

4
g6∑
∫

Q

1

(P + Q)2
[Π(Q)]2 . (2.37)

Since the leading-order solution to eq. (2.28) gives a value of p that is of the order gT , it is

justified to expand the loop diagrams in a Taylor series around p = 0. We can then write

eq. (2.28) as

m2
D = Π̃

(h)
1 (0) + Π̃

(h)
2 (0) + Π̃

(h)′
2 (0)p2 + Π̃3(0) + · · · , p2 = −m2

D , (2.38)

or m2
D = Π̃

(h)
1 (0)+ Π̃

(h)
2 (0)+ Π̃

(h)
3 (0)− Π̃1(0)Π̃

′
2(0) . We then need the two-loop self-energy

diagram Π̃2b(P ) to order p2, while the three-loop self-energy diagrams Π̃
(h)
3c (P ) and Π̃

(h)
3e (P )

can be evaluated at p = 0. This yields

Π̃
(h)
2b (P ) = −1

6
g4∑
∫

QR

1

Q2R2(Q + R)2
− 1

6
g4p2∑

∫

QR

(4/d)q2 − Q2

Q6R2(Q + R)2
+ O(p4) , (2.39)

Π̃
(h)
3c (0) =

1

4
g6∑
∫

K

1

K2

∑

∫

QR

1

Q4R2(Q + R)2
, (2.40)

Π̃
(h)
3e (0) =

1

4
g6∑
∫

Q

1

Q2
[Π(Q)]2 . (2.41)

The sum-integrals needed are listed in appendix A. After renormalization, we obtain

m2(Λ) =
1

24
g2(Λ)T 2 ×

×
{

1 +
g2

(4π)2

[

1

ǫ
+ log

Λ

4πT
+ 2 − γE + 2

ζ ′(−1)

ζ(−1)

]

− 6g4

(4π)4
×

×
[

1

ǫ

(

log
Λ

4πT
+ γE

)

+
7

2
log2 Λ

4πT
+

(

19

18
+ 5γE + 2

ζ ′(−1)

ζ(−1)

)

log
Λ

4πT
+

+
2851

864
− 95

48
γ2

E − 119

144
γE − 1

144
ζ(3) − 9γ1 +

ζ ′(−1)

ζ(−1)

(

113

72
+

17

12
γE

)

−
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−1

4

ζ ′′(−1)

ζ(−1)
+

29

32
π2 − 2γE log(2π) + 2 log2(2π) − 1

24
C ′

ball +
1

4
CI

]

+

+ O(ǫ)

}

, (2.42)

where g = g(Λ) and CI = −38.4672. The mass parameter through order g4 is known to

order ǫ [9], but we only need it to order ǫ0. We notice that the mass parameter contains

uncancelled poles in ǫ. It is advantageous to write the mass term as a sum of a finite piece

m̃2 and a counterterm ∆m2, where

m̃2(Λ) =
1

24
g2(µ)T 2 ×

×
{

1 +
g2

(4π)2

[

4 log
Λ

4πT
− 3 log

µ

4πT
+ 2 − γE + 2

ζ ′(−1)

ζ(−1)

]

−

− 6g4

(4π)4

[

4 log2 Λ

4πT
− 3

2
log2 µ

4πT
+

(

19

18
− γE + 2

ζ ′(−1)

ζ(−1)

)

log
µ

4πT
+

+4γE log
Λ

4πT
+

2851

864
− 95

48
γ2

E − 119

144
γE − 1

144
ζ(3) − 7γ1+

+
ζ ′(−1)

ζ(−1)

(

113

72
+

17

12
γE

)

− 1

4

ζ ′′(−1)

ζ(−1)
+

25

32
π2 − 2γE log(2π)+

+2 log2(2π) − 1

24
C ′

ball +
1

4
CI

]

+ O(ǫ)

}

, (2.43)

∆m2(Λ) =
g4T 2

24(4π)2ǫ

[

1 − 6g2

(4π)2

(

log
µ

4πT
+ γE

)

−

− 6g2

(4π)2

(

log2 µ

4πT
+ 2γE log

µ

4πT
+

π2

8
− 2γ1

)

ǫ

]

,

=
g4
3(Λ)

24(4π)2ǫ
, (2.44)

where g = g(µ) and we have used eq. (2.9) to change the renormalization scale from Λ to

µ. The term ∆m2 acts as a counterterm in the effective theory. In fact, the sunset diagram

in three dimensions that contribute to the self-energy is logarithmically divergent, whose

divergence exactly is given by the right-hand side of eq. (2.44) [22]. The mass parameter

m̃ in three dimensions therefore satisfies the evolution equation

Λ
∂

∂Λ
m̃2 =

1

6

g4
3

(4π)2
. (2.45)

In the remainder of the paper, we will use m instead of m̃ for covenience.

3 Soft contributions

In this section, we calculate the soft contributions Psoft to the pressure. This requires the

calculations of vacuum diagrams in the effective theory (2.4) through five loops. In order

to take into account the soft scale gT , we now include the mass term m2 in the free part

of the Lagrangian and only the quartic term in eq. (2.4) is treated as an interaction. The

– 10 –



J
H
E
P
0
8
(
2
0
0
9
)
0
6
6

inclusion of the mass term in the propagators cuts off the infrared divergences that plagues

naive perturbation theory in the full theory.

The one-loop vacuum diagram is shown in figure 2. Its contribution to the free energy

is given by

F (s)
0 =

1

2
T

∫

p
log
(

p2 + m2
)

, (3.1)

where the superscript (s) indicates that the expression gives the soft contribution to the

free energy. Using the expression in the appendix B, we obtain

F (s)
0 = −m3T

12π
. (3.2)

The two-loop vacuum diagram is shown in figure 3. Its contribution to the free energy is

given by

F (s)
1 =

1

8
g2
3T

(
∫

p

1

p2 + m2

)2

. (3.3)

Using the expression in the appendix B, we obtain

F (s)
1 =

g2
3m

2T

8(4π)2
. (3.4)

The three-loop vacuum diagrams are shown in figure 4. The contribution to the free energy

is given by

F (s)
2 = F (s)

2a + F (s)
2b +

∂F (s)
0

∂m2
∆m2 , (3.5)

where ∆m2 is the mass counterterm (2.44) in the effective theory and

F (s)
2a = − 1

16
g4
3T

(
∫

p

1

p2 + m2

)2 ∫

q

1

(q2 + m2)2
, (3.6)

F (s)
2b = − 1

48
g4
3T

∫

pqr

1

p2 + m2

1

q2 + m2

1

r2 + m2

1

(p + q + r)2 + m2
. (3.7)

Using the expression in the appendix B, we obtain

F (s)
2 =

g4
3mT

96(4π)3

[

8 log
Λ

2m
+ 9 − 8 log 2

]

. (3.8)

We note that all poles in ǫ cancel as they must since there are no divergences from the

hard part proportional to g4
3m.

The four-loop vacuum diagrams are shown in figure 5. The contribution to the free

energy is given by

F (s)
3 = F (s)

3a + F (s)
3b + F (s)

3c + F (s)
3d +

∂F (s)
1

∂m2
∆m2 , (3.9)
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where the expressions for the diagrams are

F (s)
3a =

1

32
g6
3T

(
∫

p

1

p2 + m2

)2(∫

q

1

(q2 + m2)2

)2

, (3.10)

F (s)
3b =

1

48
g6
3T

(
∫

p

1

p2 + m2

)3 ∫

q

1

(q2 + m2)3
, (3.11)

F (s)
3c =

1

24
g6
3T

∫

pqr

1

(p2 + m2)2
1

q2 + m2

1

r2 + m2

1

(p + q + r)2 + m2
×

×
∫

s

1

s2 + m2
, (3.12)

F (s)
3d =

1

48
g6
3T

∫

pqrs

1

q2 + m2

1

(p + q)2 + m2

1

r2 + m2

1

(p + r)2 + m2
×

× 1

s2 + m2

1

(p + s)2 + m2
. (3.13)

Using the expressions in the appendix B, we obtain

F (s)
3 =

g6
3T

768(4π)4

[

−4
(

4 − π2
)

log
Λ

2m
− 4 + 16 log 2 − 42ζ(3) + π2(1 + 2 log 2)

]

+

+
g6
3Tπ2

1536(4π)4ǫ
. (3.14)

The pole in ǫ in eq. (3.14) arises from the triangle diagram in eq. (3.13). This pole is

cancelled by the counterterm in eq. (2.24).

The five-loop vacuum diagrams are shown in figure 7. The contributions to the free

energy are given by

F (s)
4 = F (s)

4a + F (s)
4b + F (s)

4c + F (s)
4d + F (s)

4e + F (s)
4f + F (s)

4g + F (s)
4h + F (s)

4i + F (s)
4j +

+
∂F (s)

2

∂m2
∆m2 +

1

2

∂2F (s)
0

(∂m2)2
(∆m2)2 . (3.15)

where the expressions for the diagrams are

F (s)
4a = − 1

64
g8
3T

(
∫

p

1

p2 + m2

)2(∫

q

1

(q2 + m2)2

)3

, (3.16)

F (s)
4b = − 1

32
g8
3T

(
∫

p

1

p2 + m2

)3 ∫

q

1

(q2 + m2)2

∫

r

1

(r2 + m2)3
, (3.17)

F (s)
4c = − 1

128
g8
3T

(
∫

p

1

p2 + m2

)4 ∫

q

1

(q2 + m2)4
, (3.18)

F (s)
4d = − 1

16
g8
3T

∫

pqrs

1

(q2 + m2)2
1

(p + q)2 + m2

1

r2 + m2

1

(p + r)2 + m2
×

× 1

s2 + m2

1

(p + s)2 + m2

∫

t

1

t2 + m2
, (3.19)

F (s)
4e = − 1

48
g8
3T

∫

pqr

1

(p2 + m2)3
1

q2 + m2

1

r2 + m2

1

(p + q + r)2 + m2
×

×
(
∫

s

1

s2 + m2

)2

, (3.20)
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(a)

(b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 7. Five-loop vacuum diagrams that contribute to the soft part of the free energy.

F (s)
4f = − 1

32
g8
3T

∫

pqr

1

(p2 + m2)2
1

(q2 + m2)2
1

r2 + m2

1

(p + q + r)2 + m2
×

×
(
∫

s

1

s2 + m2

)2

, (3.21)

F (s)
4g = − 1

48
g8
3T

∫

pqr

1

(p2 + m2)2
1

q2 + m2

1

r2 + m2

1

(p + q + r)2 + m2
×

×
∫

s

1

s2 + m2

∫

t

1

(t2 + m2)2
, (3.22)

F (s)
4h = − 1

128
g8
3T

∫

pqrst

1

q2 + m2

1

(p + q)2 + m2

1

r2 + m2

1

(p + r)2 + m2
×

× 1

s2 + m2

1

(p + s)2 + m2

1

t2 + m2

1

(p + t)2 + m2
, (3.23)

F (s)
4i = − 1

144
g8
3T

∫

p

1

(p2 + m2)2

∫

qr

1

q2 + m2

1

r2 + m2

1

(p + q + r)2 + m2
×

– 13 –
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×
∫

st

1

s2 + m2

1

t2 + m2

1

(p + s + t)2 + m2
, (3.24)

F (s)
4j = − 1

32
g8
3T

∫

pqrst

1

q2 + m2

1

(p + q)2 + m2

1

(p + r)2 + m2

1

(t + r)2 + m2

1

r2 + m2
×

× 1

(p + s)2 + m2

1

(s + t)2 + m2

1

s2 + m2
. (3.25)

Using the expressions in the appendix B, we obtain

F (s)
4 = − g8

3T

288m(4π)5
×

×
[

log2 Λ

2m
+

1

4
(1 − 8 log 2) log

Λ

2m
− 15

64
− 3

8
π2 +

9

8
π2 log 2+

+
23

4
log 2 + 6 log2 2 − 6 log 3 − 81

16
ζ(3) + 5Li2(

1
4) + 9C4j

]

, (3.26)

where C4j = 0.443166. We note that all poles in ǫ cancel as they must since there are

no divergences from the hard part proportional to g8
3/m. Adding eqs. (3.2), (3.3), (3.8),

(3.14), and (3.26) as well as the counterterm eq. (2.24), we obtain the soft contribution to

the free energy through five loops

F (s)
0+1+2+3+4 = −m3T

12π
+

g2
3m

2T

8(4π)2
+

g4
3mT

96(4π)3

[

8 log
Λ

2m
+ 9 − 8 log 2

]

+

+
g6
3T

768(4π)4
×

×
[

−4(4 − π2) log
Λ

2m
− 4 + 16 log 2 − 42ζ(3) + π2(1 + 2 log 2)

]

−

− g8
3T

288m(4π)5
×

×
[

log2 Λ

2m
+

1

4
(1 − 8 log 2) log

Λ

2m
− 15

64
− 3

8
π2 +

9

8
π2 log 2+

+
23

4
log 2 + 6 log2 2 − 6 log 3 − 81

16
ζ(3) + 5Li2(

1
4) + 9C4j

]

. (3.27)

Using the evolution equations for g2
3 and m2, it easy to check that the free energy, eq. (2.23)

plus eq. (3.27) is independent of the factorization scale Λ.

By expanding the coupling g2
3 (2.8) and the mass parameter m2 (2.43) to the appro-

priate orders in the various terms in (3.27), we obtain the soft contribution through order

g7. This yields

Fsoft = −π2T 4

90
×

×
{

5
√

6

3
α3/2 − 15

2
α2 − 15

√
6

2
α5/2

[

log
µ

4πT
− 2

3
log α + C5

]

−

− 15

16
α3 ×
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×
[

−48 log
µ

4πT
+ 16

ζ ′(−1)

ζ(−1)
− 32γE − 84ζ(3) + 8 + 16 log

2

3
+

+16 log α + π2

(

2 + 12 log 2 − 4 log
2

3
− 4 log α + 8 log

Λ

4πT

)]

+

+
225

√
6

8
α7/2 ×

×
[

log2 µ

4πT
+

(

221

135
+

2

3
γE − 4

3
log

2

3
− 4

3

ζ ′(−1)

ζ(−1)
− 4

3
log α

)

log
µ

4πT
+

+

(

2

15
+

8

45

ζ ′(−1)

ζ(−1)
− 52

45
γE +

8

45
log

2

3

)

log α +
4

45
log2 α+

+ C7

]}

, (3.28)

where the constants C5 and C7 are defined below.

4 Results and discussion

The full pressure is given by minus the sum of eq. (2.23) and eq. (3.27). The strict

weak-coupling result for the pressure through order g7 is minus the sum of eq. (2.23)

and eq. (3.28). This yields

P = Pideal ×

×
{

1 − 5

4
α +

5
√

6

3
α3/2 +

15

4
α2

[

log
µ

4πT
+ C4

]

−

− 15
√

6

2
α5/2

[

log
µ

4πT
− 2

3
log α + C5

]

−

− 45

4
α3

[

log2 µ

4πT
− 1

3

(

269

45
− 2γE − 8

ζ ′(−1)

ζ(−1)
+ 4

ζ ′(−3)

ζ(−3)

)

log
µ

4πT
+

+
1

3
(4 − π2) log α + C6

]

+

+
225

√
6

8
α7/2 ×

×
[

log2 µ

4πT
+

(

221

135
+

2

3
γE − 4

3
log

2

3
− 4

3

ζ ′(−1)

ζ(−1)
− 4

3
log α

)

log
µ

4πT
+

+

(

2

15
+

8

45

ζ ′(−1)

ζ(−1)
− 52

45
γE − 8

45
log

2

3

)

log α +
4

45
log2 α + C7

]}

, (4.1)

where Pideal = π2T 4/90 and where the constants C4 − C7 are

C4 ≡ −59

45
+

1

3
γE +

4

3

ζ ′(−1)

ζ(−1)
− 2

3

ζ ′(−3)

ζ(−3)
, (4.2)

C5 ≡ 5

6
+

1

3
γE − 2

3
log

2

3
− 2

3

ζ ′(−1)

ζ(−1)
, (4.3)

C6 ≡ 1

3
(4 − π2) log

2

3
+

103

54
+

1

18
C ′

ball −
1

6
Ca

triangle −
π2

12
Cb

triangle +
4

9
γ1 −

511

180
γE +
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+
25

36
γ2

E +
5π2

24
− π2

3
γE + π2 log 2 +

(

175

54
− 1

9
γE

)

ζ ′(−1)

ζ(−1)
+

2

3

(

ζ ′(−1)

ζ(−1)

)2

+

+
5

9

ζ ′′(−1)

ζ(−1)
− 2

3
γE

ζ ′(−3)

ζ(−3)
− 2267

324
ζ(3) , (4.4)

C7 = −1457

810
+

1

45
C ′

ball −
2

15
CI +

749

270
γE +

56

15
γ1 −

11

20
π2 +

2

15

ζ ′′(−1)

ζ(−1)
+

+
16

15
γE log(2π) − 16

15
log2(2π) − 52

45
γE log

2

3
− 19

27

ζ ′(−1)

ζ(−1)
− 38

45
γE

ζ ′(−1)

ζ(−1)
+

+
4

45

(

ζ ′(−1)

ζ(−1)

)2

+
34

15
log

2

3
+

2

5
π2 log 2 +

4

45
log2 3 +

28

15
log2 2 −

− 8

45
log 2 log 3 +

8

45

ζ ′(−1)

ζ(−1)
log

2

3
− 97

54
ζ(3) +

16

9
Li2(

1
4) +

97

90
γ2

E +
16

5
C4j , (4.5)

where Ca
triangle = −25.7055 and Cb

triangle = 28.9250. The numerical values of C4 − C7 are

C4 = 1.09775 , (4.6)

C5 = −0.0273205 , (4.7)

C6 = −6.5936 , (4.8)

C7 = −0.862 . (4.9)

Note that the Λ-dependence cancels in the result (4.1). Using eq. (2.9) for the running of

α, it is straightforward to check that the final result eq. (4.1) is RG invariant up to higher-

order corrections. The order-g4 result was obtained by Frenkel, Saa, and Taylor [23], the

order-g5 result by Parwani and Singh [24], the order-g6 log(g) result by Braaten and Ni-

eto [19], and the order-g6 result by Gynther et al. [15]. The latter was later reproduced in

ref. [21] using screened perturbation theory [25–27] by taking the weak-coupling limit for

the mass parameter, m = gT/
√

24.

An expansion of the pressure in powers of g is given in eq. (4.1). It is accurate up to

corrections of order g8 log(g). A more accurate expression can be obtained by using the

fact that our short-distance coefficients satisfy a set of evolution equations. The solutions

to the evolution equations are

g2
3(Λ) = g2

3(2πT ) , (4.10)

f(Λ) = f(2πT ) − π2g6
3(2πT )

192(4π)4
log

Λ

2πT
, (4.11)

m2(Λ) = m2(2πT ) +
g4
3(2πT )

6(4π)2
log

Λ

2πT
. (4.12)

If we substitute the short-distance coefficients (4.10) and (4.12) into eq. (3.27) and add

the short-distance contribution (4.11), setting Λ = gT/
√

24 everwhere, and expand the

resulting expression in powers of g, we obtain the complete result for the pressure, which

is correct up to order g8 log(g). The contributions to the free energy F of order g8 log(g)

come from (4.11) and from using (4.12) to expand the g2
3m

2T term in (3.27). This yields

Fg8 log(g) =
3g8T 4

64(4π)6
(log 2 − γE) (4 − π2) log(g) . (4.13)
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Figure 8. Hard contributions Phard to the pressure P normalized to Pideal to order g2, g4, and g6.
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Figure 9. Soft contributions Psoft to the pressure P normalized to Pideal to order g3, g4, g5, g6,

g7, and g8 log(g).

Moreover, using the solutions to the flow equations, we are summing up leading logarithms

of the form g2n+3 logn(g) and e.g. subleading logarithms of the form g2n+5 logn(g), where

n = 2, 3, . . .. These terms are obtained by expanding out the m3T and g4
3mT terms

in (3.27), respectively.

In figure 8, we show the various loop orders of Phard normalized to Pideal to orders

g2, g4, and g6, where Phard is given by minus eq. (2.23).4 We have chosen µ = 2πT and

Λ = 2πT . We notice that the successive approximations are larger than the previous one.

In figure 9, we show the weak-coupling expansion of Psoft normalized to Pideal to orders g3,

g4, g5 g6, g7, and g8 log(g), where Psoft is given by minus the sum of eqs. (3.28) and (4.13).

In figure 10, we show the weak-coupling expansion of the pressure P given by (4.1)

minus (4.13) normalized to Pideal to orders g2, g3 g4, g5 g6, g7, and g8 log(g) . The

convergence properties of the successive approximations of the sum P = Phard + Psoft

4Note that we omit the pole in ǫ in eq. (2.23) in the plots of the hard part.
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Figure 10. Weak-coupling expansion of the pressure P normalized to Pideal to order g2, g3, g4,

g5, g6, g7, and g8 log(g).
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Figure 11. Soft contributions Psoft to the pressure P normalized to Pideal at one through five

loops.

clearly is better than the convergence properties of the successive approximations to Phard

and Psoft separately.

In figure 11, we plot the successive loop orders of minus eq. (3.27) normalized to Pideal.

In the one- and two-loop approximations, we use the leading-order results for g2
3 and for m2.

At three and four loops, we use the leading-order result for g2
3 and next-to-leading order

result for m2. Finally, at five loops, we use the solutions to the evolution equations for g2
3 , f ,

and m2. The renormalization scale is µ = 2πT and the factorization scale is Λ = gT/
√

24.

These approximations represent a selective resummation of higher-order terms. Clearly,

the convergence is better than the strict perturbative expansion. In particular, the three-,

four-, and five-loop approximations are very close.

In figure 12, we plot the successive loop orders of the the pressure which is given by the

sum of minus eq. (2.23) minus eq. (3.27), and minus (4.13), normalized to Pideal, starting

– 18 –
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Figure 12. Successive approximations to the pressure P normalized to Pideal at two through five

loops.,

at two loops. We are using the same approximations for g2
3 and m2 as in the previous plot.

Again we notice that the convergence of P is better than Phard and Psoft separately. In fact

the convergence is very good as the 3-loop through 5-loop approximations are very close.

It is not surprising that a selective resummation improves the convergence of the series.

This was also notice in screened perturbation theory [21, 25–27].

5 Summary

In the present paper, we have calculated the pressure to order g8 log(g) in massless φ4-

theory at weak coupling. The first step is the determination of the coefficients in the

dimensionally reduced effective field theory. This calculation encodes the physics of the

hard scale T . The mass parameter was needed to order g6 and involves a nontrivial three-

loop sum-integral that was recently calculated in ref. [21]. The second step consists of

using the effective theory to calculate the vacuum diagrams through five loops. All loop

diagrams in the effective theory but one could be calculated analytically with dimensional

regularization. This way of organizing the calculations is more economical and efficient

than resummed perturbation theory.

The parameters of the effective theory, g2
3 , f , and m2, satisfy a set of evolution equa-

tions. The solutions of these equations show that the parameters depend explicitly on the

renormalization scale. This dependence is necessary to cancel the dependence on the scale

in the effective theory [19]. The fact the our final result for the pressure is independent of

the renormalization scale is a nontrivial check of the calculations. Furthermore, by choos-

ing Λ = gT/
√

24 and using the solutions to the evolution equations, we were able to sum

up leading logarithms of the form g2n+3 logn(g) and e.g. subleading logarithms of the form

g2n+5 logn(g), where n = 2, 3, . . .. as well as obtaining the coefficient of the g8 log(g) term.

As pointed out in ref. [15], it would be advantageous to develop the machinery of cal-

culating complicated multiloop sum-integrals in an automated fashion as has been done for

– 19 –
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Feynman diagrams at zero temperature. Perhaps such techniques could provide analytical

expressions for the constants that today are known only numerically. This is necessary if one

wants to tackle the formidable problem of calculating the hard part of the g6-contribution

to the free energy of QCD.
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A Sum-integrals

In the imaginary-time formalism for thermal field theory, the 4-momentum P = (P0,p) is

Euclidean with P 2 = P 2
0 +p2. The Euclidean energy p0 has discrete values: P0 = 2nπT for

bosons, where n is an integer. Loop diagrams involve sums over P0 and integrals over p.

With dimensional regularization, the integral is generalized to d = 3−2ǫ spatial dimensions.

We define the dimensionally regularized sum-integral by

∑

∫

P
≡
(

eγµ2

4π

)ǫ

T
∑

P0=2nπT

∫

d3−2ǫp

(2π)3−2ǫ
, (A.1)

where 3 − 2ǫ is the dimension of space and µ is an arbitrary momentum scale. The factor

(eγ/4π)ǫ is introduced so that, after minimal subtraction of the poles in ǫ due to ultraviolet

divergences, µ coincides with the renormalization scale of the MS renormalization scheme.

A.1 One-loop sum-integrals

The massless one-loop sum-integral is given by

In ≡
∑

∫

P

1

P 2n

= (eγE µ2)ǫ
ζ(2n − 3 + 2ǫ)

8π2

Γ(n − 3
2 + ǫ)

Γ(1
2)Γ(n)

(2πT )4−2n−2ǫ , (A.2)

where ζ(x) is Riemann’s zeta function. Specifically, we need the sum-integrals

I ′
0 ≡

∑

∫

P
log P 2

= −π2T 4

45
[1 + O (ǫ)] , (A.3)

I1 =
T 2

12

( µ

4πT

)2ǫ
[

1 +

(

2 + 2
ζ ′(−1)

ζ(−1)

)

ǫ+

+

(

4 +
π2

4
+ 4

ζ ′(−1)

ζ(−1)
+ 2

ζ ′′(−1)

ζ(−1)

)

ǫ2 + O
(

ǫ3
)

]

, (A.4)

I2 =
1

(4π)2

( µ

4πT

)2ǫ
[

1

ǫ
+ 2γE +

(

π2

4
− 4γ1

)

ǫ + O
(

ǫ2
)

]

, (A.5)
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I3 =
1

(4π)4T 2
[2ζ(3) + O (ǫ)] . (A.6)

A.2 Two-loop sum-integrals

We need three two-loop sum-integral that are listed below:

Isun =
∑

∫

PQ

1

P 2Q2(P + Q)2

= O(ǫ) , (A.7)

∑

∫

PQ

P 2 + (2/d)p2

P 6Q2(P + Q)2
=

3

4(4π)4

( µ

4πT

)4ǫ
[

1

ǫ2
+

(

5

6
+ 4γE

)

1

ǫ
+

89

36
+

π

2
+

+
10

3
γE + 4γ2

E − 8γ1 + O(ǫ)

]

, (A.8)

∑

∫

PQ

P 2 − (4/d)p2

P 6Q2(P + Q)2
=

1

4(4π)4

( µ

4πT

)4ǫ
[

1

ǫ
+

19

6
+ 4γE + O(ǫ)

]

. (A.9)

The setting-sun sum-integral was first calculated by Arnold and Zhai in refs. [5, 6]. The

remaining two-loop sum-integrals were calculated by Braaten and Petitgirard [28, 29] using

the techniques developed in [5, 6].

A.3 Three-loop sum-integrals

We need the following three-loop sum-integrals:

Iball =
∑

∫

PQR

1

P 2Q2R2(P + Q + R)2

=
T 4

24(4π)2

( µ

4πT

)6ǫ
[

1

ǫ
+

91

15
+ 8

ζ ′(−1)

ζ(−1)
− 2

ζ ′(−3)

ζ(−3)
+ O(ǫ)

]

, (A.10)

I ′
ball =

∑

∫

PQR

1

P 4Q2R2(P + Q + R)2

=
T 2

8(4π)4

( µ

4πT

)6ǫ
[

1

ǫ2
+

(

17

6
+ 4γE + 2

ζ ′(−1)

ζ(−1)

)

1

ǫ
+

+
1

2
γE

(

17 + 15γE + 12
ζ ′(−1)

ζ(−1)

)

+ C ′
ball + O(ǫ)

]

, (A.11)

and

∑

∫

P

1

P 2

{

[Π(P )]2 − 2

(4π)2ǫ
Π(P )

}

=

= − T 2

4(4π)4

( µ

4πT

)6ǫ
×

×
{

1

ǫ2
+

1

ǫ

[

4

3
+ 2

ζ ′(−1)

ζ(−1)
+ 4γE

]

+

+
1

3

[

46 − 8γE − 16γ2
E − 104γ1 − 24γE log(2π) + 24 log2(2π) +

45π2

4
+

+ 24
ζ ′(−1)

ζ(−1)
+ 2

ζ ′′(−1)

ζ(−1)
+ 16γE

ζ ′(−1)

ζ(−1)

]

+ CI + O(ǫ)

}

, (A.12)
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where the self-energy Π(P ) is defined as

Π(P ) =
∑

∫

Q

1

Q2(P + Q)2
, (A.13)

and C ′
ball = 48.7976 and CI = −38.4672. The massless basketball sum-integral was first

calculated by Arnold and Zhai in refs. [5, 6]. The sum-integral eq. (A.11) was calculated by

Gynther et al. in ref. [15]. The expression for the sum-integral eq. (A.12) was calculated

in ref. [21].

A.4 Four-loop sum-integrals

We also need a single four-loop sum-integral which was calculated in ref. [15]:

∑

∫

P

{

[Π(P )]3 − 3

(4π)2ǫ
[Π(P )]2

}

=

= − T 4

16(4π)4
×

×
[

1

ǫ2
+

(

4 log
µ

4πT
+

10

3
+ 4

ζ ′(−1)

ζ(−1)

)

1

ǫ
+ (2 log

µ

4πT
+ γE)2+

+

(

6

5
− 2γE + 4

ζ ′(−3)

ζ(−3)

)

(2 log
µ

4πT
+ γE) + Ca

triangle

]

−

− T 4

512(4π)2

[

1

ǫ
+ 8 log

µ

4πT
+ 4γE + Cb

triangle

]

+ O(ǫ) , (A.14)

where Ca
triangle = −25.7055 and Cb

triangle = 28.9250.

B Three-dimensional integrals

Dimensional regularization can be used to regularize both the ultraviolet divergences and

infrared divergences in 3-dimensional integrals over momenta. The spatial dimension is

generalized to d = 3− 2ǫ dimensions. Integrals are evaluated at a value of d for which they

converge and then analytically continued to d = 3. We use the integration measure
∫

p
≡
(

eγµ2

4π

)ǫ ∫
d3−2ǫp

(2π)3−2ǫ
. (B.1)

B.1 One-loop integrals

The one-loop integral is given by

In ≡
∫

p

1

(p2 + m2)n

=
1

8π
(eγEµ2)ǫ

Γ(n − 3
2 + ǫ)

Γ(1
2 )Γ(n)

m3−2n−2ǫ . (B.2)

Specifically, we need

I ′0 ≡
∫

p
log(p2 + m2)

= −m3

6π

( µ

2m

)2ǫ
[

1 +
8

3
ǫ +

(

52

9
+

π2

4

)

ǫ2 + O
(

ǫ3
)

]

, (B.3)
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I1 = − m

4π

( µ

2m

)2ǫ
[

1 + 2ǫ +

(

4 +
π2

4

)

ǫ2 + O
(

ǫ3
)

]

, (B.4)

I2 =
1

8πm

( µ

2m

)2ǫ
[

1 +
π2

4
ǫ2 + O

(

ǫ3
)

]

, (B.5)

I3 =
1

32πm3

( µ

2m

)2ǫ
[

1 + 2ǫ +
π2

4
ǫ2 + O

(

ǫ3
)

]

, (B.6)

I4 =
1

64πm5

( µ

2m

)2ǫ
[

1 +
8

3
ǫ +

(

4

3
+

π2

4

)

ǫ2 + O
(

ǫ3
)

]

. (B.7)

B.2 Two-loop integrals

We need the following two-loop integral

Isun(p = im) =

∫

qr

1

q2 + m2

1

r2 + m2

1

(p + q + r)2 + m2

∣

∣

∣

∣

p=im

=
1

4(4π)2

( µ

2m

)4ǫ
×

×
[

1

ǫ
+ 6 − 8 log 2 +

(

36 − π2

6
− 48 log 2 + 8 log2 2

)

ǫ + O(ǫ2)

]

.(B.8)

This integral was calculated to order ǫ0 in ref. [19] and to order ǫ in refs. [28, 29].

B.3 Three-loop integrals

We need the following three-loop integrals:

Iball =

∫

pqr

1

p2 + m2

1

q2 + m2

1

r2 + m2

1

(p + q + r)2 + m2

= − m

(4π)3

( µ

2m

)6ǫ
×

×
[

1

ǫ
+ 8 − 4 log 2 + 4

(

13 +
17

48
π2 − 8 log 2 + log2 2

)

ǫ + O
(

ǫ2
)

]

, (B.9)

I ′ball =

∫

pqr

1

(p2 + m2)2
1

q2 + m2

1

r2 + m2

1

(p + q + r)2 + m2

=
1

8m(4π)3

( µ

2m

)6ǫ
×

×
[

1

ǫ
+ 2 − 4 log 2 + 4

(

1 +
17

48
π2 − 2 log 2 + log2 2

)

ǫ + O
(

ǫ2
)

]

, (B.10)

J =

∫

pqr

1

(q2 + m2)2
1

(p + q)2 + m2

1

(r2 + m2)2
1

(p + r)2 + m2

=
1

16m3(4π)3

( µ

2m

)6ǫ
[1 + O (ǫ)] , (B.11)

K =

∫

pqr

1

(q2 + m2)3
1

(p + q)2 + m2

1

r2 + m2

1

(p + r)2 + m2

=
1

32m3(4π)3

( µ

2m

)6ǫ
[

1

ǫ
+ 5 − 4 log 2 + O (ǫ)

]

. (B.12)

– 23 –



J
H
E
P
0
8
(
2
0
0
9
)
0
6
6

The massive basketball was calculated in ref. [19] to order ǫ0, and to order ǫ in ref. [9]. I ′ball

can be obtained by differentiation of Iball with respect to m. The 3-loop integrals J and

K are calculated in appendix C.

B.4 Four-loop integrals

We need the following two four-loop integrals

Itriangle =

∫

pqrs

1

q2 + m2

1

(p + q)2 + m2

1

r2 + m2

1

(p + r)2 + m2

1

s2 + m2

1

(p + s)2 + m2

=
π2

32(4π)4

( µ

2m

)8ǫ
[

1

ǫ
+ 2 + 4 log 2 − 84

π2
ζ(3) + O (ǫ)

]

, (B.13)

I ′triangle =

∫

pqrs

1

(q2 + m2)2
1

(p + q)2 + m2

1

r2 + m2

1

(p + r)2 + m2

1

s2 + m2

1

(p + s)2 + m2

=
π2

48m2(4π)4

( µ

2m

)8ǫ
[1 + O (ǫ)] . (B.14)

The triangle diagram was calculated in ref. [30]. The diagram I ′triangle follows from the

triangle diagram upon differentiation with respect to m2.

B.5 Five-loop integrals

Irung =

∫

pqrst

1

q2 + m2

1

(p + q)2 + m2

1

r2 + m2

1

(p + r)2 + m2

1

s2 + m2

1

(p + s)2 + m2
×

× 1

t2 + m2

1

(p + t)2 + m2

=
1

2m(4π)5

( µ

2m

)10ǫ
[

π2 log 2 − 9

2
ζ(3) + O (ǫ)

]

, (B.15)

Idoublesun =

∫

pqrst

1

(p2 + m2)2
1

q2 + m2

1

r2 + m2

1

(p + q + r)2 + m2
×

× 1

s2 + m2

1

t2 + m2

1

(p + s + t)2 + m2

=
1

32m(4π)5

( µ

2m

)10ǫ
×

×
[

1

ǫ2
+ (4 − 8 log 2)

1

ǫ
− 4 +

31

12
π2 − 96 log 3 + 64 log 2 + 104 log2 2

+ 80Li2(
1
4 ) + O (ǫ)

]

, (B.16)

I4j =

∫

pqrst

1

q2 + m2

1

(p + q)2 + m2

1

(p + r)2 + m2

1

(t + r)2 + m2

1

r2 + m2
×

× 1

(p + s)2 + m2

1

(t + s)2 + m2

1

s2 + m2

=
1

m(4π)5

( µ

2m

)10ǫ
[C4j + O(ǫ)] , (B.17)

where C4j = 0.443166. The integrals are calculated in appendix C.
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C Explicit calculations

In this appendix, we calculate explicitly some of the multi-loop vacuum diagrams in three

dimensions.

The three-loop integral J in eq. (B.11) can be written as

J =

∫

p

[

I ′bubble(p)
]2

, (C.1)

where

I ′bubble(p) =

∫

q

1

(q2 + m2)2
1

(p + q)2 + m2
. (C.2)

By power counting it is easy to see that both J and I ′bubble are finite in three spatial

dimension. The latter then reduces to

I ′bubble(p) =
1

8πm

1

p2 + 4m2
. (C.3)

Inserting eq. (C.3) into eq. (C.1) and using eq. (B.5) with ǫ = 0 and a mass of 2m. we

obtain eq. (B.11).

The integral K can be calculated by noting the relation

I ′′ball = −2K − 3J . (C.4)

The integral Irung in (B.15) can be written as

Irung =

∫

p
I4
bubble(p) , (C.5)

where

Ibubble(p) =

∫

q

1

q2 + m2

1

(p + q)2 + m2
. (C.6)

The integrals Irung and Ibubble(p) are convergent in three dimensions. The latter then

reduces to

Ibubble(p) =
1

4πp
arctan

p

2m
. (C.7)

Irung can now be easily found and the result is given by eq. (B.15).

The diagram appearing in F5i can be written as

Idoublesun =

∫

p

1

(p2 + m2)2
I2
sun(p) , (C.8)

where Isun(p) is

Isun(p) =

∫

qr

1

q2 + m2

1

r2 + m2

1

(p + q + r)2 + m2
. (C.9)
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In order to isolate the divergences in (C.8), we add and subtract Isun(p = im), and rewrite

it as

Idoublesun =

∫

p

1

(p2 + m2)2
×

×
{

[Isun(p) − Isun(p = im)]2 + 2Isun(p)Isun(p = im)−

− I2
sun(p = im)

}

. (C.10)

We denote the three terms above by Ids1, Ids2, and Ids3. We first consider Ids1. The dif-

ference Isun(p) − Isun(p = im) is finite and can be calculated directly in three dimensions.

We obtain

Isun(p) − Isun(p = im) =

= − 1

(4π)2

( µ

2m

)4ǫ
[

3m

p
arctan

p

3m
+

1

2
ln

p2 + 9m2

64m2
+ O(ǫ)

]

. (C.11)

The first term Ids1 is finite in three dimensions. Using eq. (C.11), we obtain

Ids1 =
1

2m(4π)5

( µ

2m

)10ǫ
[

6 log22 − 6 log 3 + 4 log 2 + 5Li2(
1
4 ) + O(ǫ)

]

. (C.12)

The second term Ids2 can be written as

Ids2 = 2Isun(p = im)

∫

pqr

1

(p2 + m2)2
1

q2 + m2

1

r2 + m2

1

(p + q + r)2 + m2
. (C.13)

Using eqs. (B.8) and (B.10), we obtain

Ids2 =
1

16m(4π)5

( µ

2m

)10ǫ
×

×
[

1

ǫ2
+ (8 − 12 log 2)

1

ǫ
+ 52 +

5

4
π2 − 96 log 2 + 44 log2 2 + O(ǫ)

]

. (C.14)

Similarly, Ids3 can be written as

Ids3 = −I2
sun(p = im)I2

= − 1

32m(4π)5

( µ

2m

)10ǫ
×

×
[

1

ǫ2
+ (12 − 16 log 2)

1

ǫ
+ 108 − π2

12
− 192 log 2 + 80 log2 2 + O(ǫ)

]

. (C.15)

Adding eqs. (C.12), (C.14), and (C.15), we obtain

Idoublesun =
1

32m(4π)5

( µ

2m

)10ǫ
×

×
[

1

ǫ2
+ (4 − 8 log 2)

1

ǫ
− 4 +

31

12
π2 − 96 log 3 + 64 log 2 + 104 log2 2 +

+ 80Li2(
1
4) + O(ǫ)

]

. (C.16)
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Let us finally discuss the five-loop integral appearing in eq. (B.17). It can be written as

I4j =

∫

pq
Ibubble(p) [Πtri(p, q)]2 , (C.17)

where

Πtri(p, q) =

∫

r

1

r2 + m2

1

(p + r)2 + m2

1

(q + r)2 + m2
. (C.18)

The diagram (C.18) is finite in three dimensions and can be written as [31, 32]

Πtri(p, q) =
arctan(

√
D/C)

8π
√

D
, (C.19)

where

C =
p2 + q2 + p · q + 4m2

m2
, (C.20)

D =
p2q2(p − q)2 + 4m2[p2q2 − (p · q)2]

4m6
. (C.21)

The integral (C.17) can now be evaluated numerically by first averaging over angles and

then integrating over p and q. This yields

I4j =
1

m(4π)5

( µ

2m

)10ǫ
[0.443166] . (C.22)
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